Exploring Louisiana’s Coast

Coastal Louisiana is among the most productive ecosystems in the United States, with fisheries spanning the Mississippi Delta to the deep Gulf of Mexico. It is a place of abundant wetlands, rich alluvial plains, frequent human disturbance, and massive hypoxic zones. It supports some of the United States’ largest industries, including major fisheries as well of offshore oil and gas. Powerful hurricanes reshape the coastline as they blow through.

Louisiana is experiencing the fastest land loss in the world, losing 27.5 acres of land per day (that’s 1 football field every hour). It is a hotspot for climate change. Exploring and understanding Louisiana’s vibrant coastal ecosystems is a race against time.

These expeditions will expand our understanding of the Louisiana coastline by putting scientific- grade observation-class ROVs into the hands of researchers, students, citizen scientists, and explorers. Initiatives can focus on any aspect of Coastal Louisiana, from environmental monitoring, to experimental ecology, to education and outreach and citizen science.

How to participate

  1. Must be the leader of an active OpenExplorer Expedition (Start one here).
  2. Expedition must be based in Coastal Louisiana.
  3. User account has Facebook verification (Check here).

Initiative Sponsors

OpenExplorer Initiatives are made possible by a variety of partners, both foundations and companies. If your organization would like to get involved, please email us at partnership@openexplorer.com

Discover one of our Expeditions


Louisiana Universities Marine Consortium (LUMCON) operates an Environmental Monitoring Program with stations that include both meteorological as well as water quality instrumentation in Terrebonne Bay. LUMCON’s monitoring stations offer real-time in-situ coastal environmental data that is available to the scientific community and the general public. While stationary monitoring stations are excellent for collecting long-term time-series data sets, an OpenROV Trident carrying a mini-CTD payload would be ideal for conducting transects and collecting pressure, temperature, conductivity, nutrient, chlorophyll and dissolved oxygen data over a larger area within Terrebonne bay. A Trident/CTD can be used in areas that are inaccessible to a conventional motor vessel. Another advantage of a Trident/CTD system would be collection of water quality data in 3 dimensions by combining horizontal transects with an undulating motion of diving and ascending, in effect creating an undulating CTD without the need for a motor vessel to tow the system and create disturbances in the water column ahead of the CTD. Utilizing real time sensor information we can make the data instantly accessible which allows for easy dissemination of crucial small scale events occurring on a bay wide basis in a time frame that allows for immediate action by interested parties.For summer of 2017, LUMCON’s Environmental Monitoring Program has approached YSI/Xylem concerning purchasing or obtaining a demo EXO1 4-port data sonde with pressure, temperature, conductivity, and dissolved oxygen probes. LUMCON would like to design a mount for an EXO1 sonde, experiment with flight patterns to determine the most efficient speed and pattern for covering the water column along a transect, as well as assess the feasibility of mapping hypoxia across all of Terrebonne bay. (Figure 1. from Batker et al. 2010, Earth Economics)

Our expedition in coastal Louisiana will in many ways be an analog of our deep-sea experiments investigating wood fall communities. In May of 2017 we will deploy 200 wood packages at 5 sites, 2,000 meters deep in the Gulf of Mexico. Identical wood packages will be deployed in a transect from land to open ocean in Terrebonne Bay with the goal of conducting parallel experiments. Using the OpenROV we will gather environmental data at our experimental sites and conduct frequent visual inspections to learn more about the ecology of wood on sea floor ecosystems in the shallow water habitats of Louisiana. The Trident ROV would be used primarily as a tool to conduct site inspections in an effort to create a time series documentation of the biological and physical associations that a food and structure source creates in shallow water coastal communities. Not only would the Trident be an observation platform for the experimental arrays of wood packages but it would also be invaluable for the discovery of natural wood deposits associated with storm events and coastal erosion. Accessibility to wood fall experiments allow for an in depth investigation of several research questions that can only be addressed with regular video surveys. These include multi-species interactions, habitat use by transient mobile fauna, predator-prey dynamics, encrusting habitat enhancement, regular structure associations, and physical enhancement of benthic habitats. The use of a Trident ROV gives us a freedom unknown for these kinds of manipulative ecological experiments. Knowledge gained from the type of work described above would then enable us to plan a larger scale investigation that would seek to tie metabolic energetics along transects of differing community and resources gradients in the coastal marshes of Louisiana. Potential to develop a strong research program using the Trident ROV allows us to couple multiple lines of research that ultimately would answer basic questions of habitat heterogeneity, linkages between ecosystem structure and function and constrain aspects of the metabolic theory of ecology.

The unique and highly productive Louisiana marine ecosystem is made up of vast coastal wetlands of both abandoned and active deltas that meet the Gulf of Mexico. These productive waters in turn create some of the most productive fisheries in the world. The sheer amount and diversity of life in the teeming coastal waters of Louisiana is hard for many fathom. With an OpenROV Trident, we will bring this underwater diversity to students first hand, while engaging them with exploration and data collection that captures fish population structure and behaviors around structures in a variety of habitats and across seasons.