Project Pegasus

February 27 2017

Project Pegasus is a collaborative subtidal research and outreach project, bringing together a team of high school interns and a graduate student mentor. The high school interns will participate in the construction and implementation of an OpenROV v2.8 remotely operated vehicle. Interns will take an active role in building and using the ROV for a suite of projects related to nearshore ecology and bathymetry in Southern California.

Read background

February 27 2017


You are set up to receive WePay payments.

Here are the details to your account:

Name: Pike Spector
Account ID: 1564120863

Preparation Stage

After completing our first of five modules, we were ready to get back to work on Pegasus. The second set of instructions saw us using acrylic cement again to solvent-weld some of the internal structures of our ROV together. However, the stakes were a lot higher this time. At a certain point, we’re going to have to start building and using the electronic components of our ROV. After all, the propose of building Pegasus is to gather invaluable data, which includes real-time video from our upcoming dives. For this build we had to saw off the end of a syringe (for use later on), solvent-weld more acrylic, and super glue the DB-25 connector in to place, which is a major connection point for the electronic components.

Here’s what Project Pegasus intern Jordan Schultz had to say about today’s build:

“We were still using solvent welding to cement the plastic structural pieces together. We made sure to measure at least five times before we did any cementing of the acrylic in order to ensure no errors would occur. Everyone on the team got a turn with the dropper of acrylic solvent, however, we have noticed that it is difficult to control the speed at which the solvent comes out of the dropper. Because of this, we had to be very careful when applying the solvent, especially because it will cement the plastic together in a matter of seconds. We had a few incidents where the water-like substance poured out of the dropper, which lead to gloves being taken off and hands rapidly being washed. Nevertheless, we were able to cement the acrylic together efficiently. An important lesson we learned today was that preparation is key to being successful. If we all show up ready to build but we do not have the proper tools, little can be done. Thus moving forward, it is essential that we plan and prepare ahead of time in order to make certain that we are diligent and productive with our time.”

After it was all said and done, we had to apply fast-setting epoxy to water-proof some of the components from this week’s module and last week’s as well. Looking at the individual pieces, it’s hard to believe that after three more modules we’ll be submerging our very own ROV in the ocean!

Be sure to stay tuned, next time the team and I will learn all about soldering!

image-1 image-1 image-1 image-1

It's been a month since this project has started, and in the interim, as part of this internship, the team members are each responsible for drafting grant proposals centered around ROV-related projects. I’m really proud of the team’s creativity, so be sure to check back in for updates as we move forward.

However, as of March 21s, we’re finally getting started with the actually construction of our ROV! I'm pleased to announce that our OpenROV v2.8 kit has finally arrived. We've begun working on the first construction module; the team and I learned a lot about acrylic and solvent welding. For example, you don’t technically glue acrylic, you use a solvent to weld pieces together. Along the way my interns and I will be learning how to solder, work with circuit boards, and trouble-shoot any and all issues related to the construction and deployment of an ROV. And the clock is already ticking! We’ve got just a few short months before the Edwards Lab takes off for our last Aleutians cruise, and we’ve already got big plans for little Pegasus.

image-1 image-1 image-1 image-1
Expedition Background

In 2017 a group of high school interns from the La Jolla Windansea Surf Club and a graduate student from San Diego State University teamed up to tackle research questions related to the nearshore ecology and bathymetry of Southern California.

The traditional marine ecology approach to studying nearshore systems relies heavily on field experiments and manipulations, often times restricting data gathering to those who are scientific-SCUBA certified. Likewise, physical data in the marine environment can be costly to gather and record. At the core of these two disciplines is a desire to understand the marine environment that is both holistic and inclusive. Therefore, OpenROV is the perfect platform; interns will assist with data gathering in a safe yet applicable way without needing formal subtidal experience.

Throughout this internship experience the high school team will help draft grant applications, blog posts and outreach statements as well as strengthening their college applications.

The use of a remotely operated vehicle is the perfect tool for a multi-disciplinary approach to understanding our coastal oceans, as well as engaging with the general public.

This sounds great! Excited to follow along. This idea is key:

"assist with data gathering in a safe yet applicable way without needing formal subtidal experience"

If you develop a method and curriculum for this, it has applications for citizen scientists as well as students.